A new family of algebras underlying the Rogers-Ramanujan identities and generalizations.

نویسندگان

  • J Lepowsky
  • R L Wilson
چکیده

The classical Rogers-Ramanujan identities have been interpreted by Lepowsky-Milne and the present authors in terms of the representation theory of the Euclidean Kac-Moody Lie algebra A(1) ((1)). Also, the present authors have introduced certain "vertex" differential operators providing a construction of A(1) ((1)) on its basic module, and Kac, Kazhdan, and we have generalized this construction to a general class of Euclidean Lie algebras. Starting from this viewpoint, we now introduce certain new algebras [unk](v) which centralize the action of the principal Heisenberg subalgebra of an arbitrary Euclidean Lie algebra [unk] on a highest weight [unk]-module V. We state a general (tautological) Rogers-Ramanujan-type identity, which by our earlier theorem includes the classical identities, and we show that [unk](v) can be used to reformulate the general identity. For [unk] = A(1) ((1)), we develop the representation theory of [unk](v) in considerable detail, allowing us to prove our earlier conjecture that our general Rogers-Ramanujan-type identity includes certain identities of Gordon, Andrews, and Bressoud. In the process, we construct explicit bases of all of the standard and Verma modules of nonzero level for A(1) ((1)), with an explicit realization of A(1) ((1)) as operators in each case. The differential operator constructions mentioned above correspond to the trivial case [unk](v) = (1) of the present theory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

One-parameter Generalizations of Rogers-Ramanujan Type Identities

Resorting to the recursions satisfied by the polynomials which converge to the right hand sides of the Rogers-Ramanujan type identities given by Sills [17] and determinant method presented in [9], we obtain many new one-parameter generalizations of the Rogers-Ramanujan type identities, such as a generalization of the analytic versions of the first and second Göllnitz-Gordon partition identities...

متن کامل

A Determinant Identity that Implies Rogers-Ramanujan

We give a combinatorial proof of a general determinant identity for associated polynomials. This determinant identity, Theorem 2.2, gives rise to new polynomial generalizations of known Rogers-Ramanujan type identities. Several examples of new Rogers-Ramanujan type identities are given.

متن کامل

AN ELLIPTIC BCn BAILEY LEMMA, MULTIPLE ROGERS–RAMANUJAN IDENTITIES AND EULER’S PENTAGONAL NUMBER THEOREMS

An elliptic BCn generalization of the classical two parameter Bailey Lemma is proved, and a basic one parameter BCn Bailey Lemma is obtained as a limiting case. Several summation and transformation formulas associated with the root system BCn are proved as applications, including a 6φ5 summation formula, a generalized Watson transformation and an unspecialized Rogers–Selberg identity. The last ...

متن کامل

Variants of the Rogers-ramanujan Identities

We evaluate several integrals involving generating functions of continuous q-Hermite polynomials in two diierent ways. The resulting identities give new proofs and generalizations of the Rogers-Ramanujan identities. Two quintic transformations are given, one of which immediately proves the Rogers-Ramanujan identities without the Jacobi triple product identity. Similar techniques lead to new tra...

متن کامل

The Rogers - Ramanujan Identities , the Finite General Linear Groups , and theHall

The Rogers-Ramanujan identities have been studied from the viewpoints of combinatorics, number theory, a ne Lie algebras, statistical mechanics, and conformal eld theory. This note connects the Rogers-Ramanujan identities with the nite general linear groups and the HallLittlewood polynomials of symmetric function theory.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 78 12  شماره 

صفحات  -

تاریخ انتشار 1981